MicroRNAs in Barrett's esophagus: future prospects

نویسندگان

  • Juntaro Matsuzaki
  • Hidekazu Suzuki
چکیده

Esophageal adenocarcinoma is an aggressive malignancy with a poor prognosis. In Western countries, the incidence of esophageal adenocarcinoma has increased dramatically in the last three decades. To improve patient survival and reduce disease burden, early-stage detection, or better yet, preventing the progression of esophageal adenocarcinoma from its premalignant lesions, constitute the best short-term options. Barrett’s esophagus is histologically characterized by the replacement of the normal stratified squamous epithelium of the esophagus with a columnar epithelium with intestinal differentiation (Matsuzaki et al., 2010, 2011). Barrett’s esophagus is considered to be a complication of gastroesophageal reflux disease and a precursor lesion of esophageal adenocarcinoma. It is generally believed that the progression of Barrett’s esophagus involves a series of histological changes: non-dysplastic Barrett’s metaplasia, low-grade dysplasia, high-grade dysplasia, and ultimately, adenocarcinoma. Although these features justify endoscopic surveillance for the premalignant stages, patients with Barrett’s esophagus show an absolute annual risk of only 0.12% for the development of esophageal adenocarcinoma (Hvid-Jensen et al., 2011). Therefore, recommending the invasive and expensive conventional endoscopic screening procedure is deemed controversial. In fact, Corley et al. reported that, within a large community-based population, endoscopic surveillance of Barrett’s esophagus was not associated with a substantial decrease in the risk of death from esophageal adenocarcinoma (Corley et al., 2013). Thus, identification of better risk stratification biomarkers to determine the risk of progression from Barrett’s esophagus to esophageal adenocarcinoma may improve disease outcome and make patient management more cost-efficient. MicroRNAs (miRNAs) are a class of small non-coding endogenous RNAs, 18–25 nucleotides in length, and are capable of simultaneous regulation of genes by binding to target mRNAs, resulting in mRNA degradation or translational inhibition. miRNAs participate in many essential biological processes, including proliferation, differentiation, apoptosis, necrosis, autophagy, and stress responses (Saito et al., 2011b, 2012a). miRNAs have also been shown to play a potential role in cancer pathogenesis through their functions as oncogenes or tumor suppressors, depending on their gene targets (Saito et al., 2009a, 2011a; Nishizawa and Suzuki, 2013). Compared to mRNAs, miRNAs are less numerous in humans and have been proposed to act as better biomarkers by virtue of their small size, greater stability, and capability of regulating hundreds of mRNAs. Therefore, miRNAs profiling could improve the risk stratification for the progression of Barrett’s esophagus to esophageal adenocarcinoma. MiRNAs can be profiled on a genomewide scale using array or sequencing technologies. However, very few studies have been conducted to identify miRNAs as prognostic biomarkers for the progression of Barrett’s esophagus to adenocarcinoma. Although several cross-sectional studies using comprehensive array analysis have been reported (Feber et al., 2008; Kan et al., 2009; Yang et al., 2009; Fassan et al., 2011; Leidner et al., 2012; Wu et al., 2013), their results have proved controversial. They compared the expression of miRNAs across different types of histological specimens such as Barrett’s esophagus, low-grade dysplasia, high-grade dysplasia, and esophageal adenocarcinoma, and reported that a substantial number of miRNAs show differential expression in esophageal tissues (Sakai et al., 2013). Indeed, they might be useful in revealing certain mechanisms underlying carcinogenesis. But, they might be difficult to identify risk stratification biomarkers. We should think about much better research strategies. Recently, two nice studies were reported to identify risk stratification biomarkers for Barrett’s esophagus: one prospective study and one cross-sectional study. First, Revilla-Nuin et al. have reported a set of miRNAs associated with this progression and provided further validation in two groups of patients with Barrett’s esophagus, who either developed or did not develop adenocarcinoma, over a course of 5 years (Revilla-Nuin et al., 2013). Among 24 patients with Barrett’s esophagus, 7 patients progressed to adenocarcinoma while the other 17 did not. Four miRNAs (miR-192, miR-194, miR-196a, and miR196b) were found to show significantly higher expression in patients with progression to esophageal adenocarcinoma than in patients who did not show disease progression. Second, Saad et al. conducted a notable comprehensive microarray profiling for identifying the specific miRNA signature associated with esophageal adenocarcinoma (Saad et al., 2013). They analyzed 13 samples from isolated Barrett’s esophagus, 10 from Barrett’s esophagus adjacent to high-grade dysplasia, 17 from high-grade dysplasia, and 34 from esophageal adenocarcinoma tissue. They

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Usefulness and Future Prospects of Confocal Laser Endomicroscopy for Gastric Premalignant and Malignant Lesions

Confocal laser endomicroscopy (CLE) is a new technology enabling endoscopists to visualize tissue at the cellular level. CLE has the fundamental potential to provide a histologic diagnosis, and may theoretically replace or reduce the need for performing biopsy for histology. The clinical benefits of CLE are more obvious in esophageal disease, including Barrett's esophagus. Currently, this techn...

متن کامل

فراوانی مری بارت دربیماران کاندید انجام آندوسکوپی

Background : Barrett's esophagus is a precancerous lesion leading to esophageal carcinoma in 10% of cases. It is usually remained undetected during endoscopy and most of physicians do not take biopsy from gastroesophageal junction (GEJ) when it seems to be normal. In the present study we have determined the frequency of Barrett's esophagus in a group of Iranian patients referring for endoscopy ...

متن کامل

Scenario and future prospects of microRNAs in gastric cancer: A review

Carcinoma of the stomach is one of the major prevalent and principal causes of cancer-related deaths worldwide. Current advancement in technology has improved the understanding of the pathogenesis and pathology of gastric cancers (GC). But, high mortality rates, unfavorable prognosis and lack of clinical predictive biomarkers provide an impetus to investigate novel early diagnostic/prognostic m...

متن کامل

MicroRNA profile in neosquamous esophageal mucosa following ablation of Barrett’s esophagus

AIM To investigate the microRNA expression profile in esophageal neosquamous epithelium from patients who had undergone ablation of Barrett's esophagus. METHODS High throughput screening using TaqMan® Array Human MicroRNA quantitative PCR was used to determine expression levels of 754 microRNAs in distal esophageal mucosa (1 cm above the gastro-esophageal junction) from 16 patients who had un...

متن کامل

Radiofrequency ablation for total Barrett's eradication: a description of the endoscopic technique, its clinical results and future prospects.

Stepwise circumferential and focal radiofrequency ablation using the HALO system is a novel and promising ablative modality for Barrett's esophagus. Primary circumferential ablation is performed using a balloon-based bipolar electrode, while secondary treatment of residual Barrett's epithelium is performed using an endoscope-mounted bipolar electrode on an articulated platform. It has been used...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014